首页 > 观点 > 正文
欧意交易所

欧意交易所

全球前三大交易所之一,新用户注册最高可得230USDT奖励,同时可拆数字盲盒,100%可以获得数字货币,最高价值60000元

点击注册 进入官网

(The Intelligent Universe will change your life)

人工智能系统发展至今,大体可分为无监督式学习和监督式学习两大类型。其中无监督式学习是指人工智能系统与外界无数据交互,纯粹依靠逻辑和规则进行自身训练。战胜了AlphaGo 和AlphaGo Master的AlphaGo Zero,就是无监督学习的例子。AlphaGo 曾战胜了韩国围棋选手李世石,AlphaGo Master战胜了中国围棋选手柯洁。AlphaGo 和AlphaGo Master都是在人类大量围棋棋谱的训练下,获得了相应的围棋对弈能力。但AlphaGo Zero则是没有经过任何人类围棋棋谱训练,完全依靠类似左右手互博的自学习,获得了超强的围棋对弈能力。无监督式学习有其自身应用局限性,仅适用于那些规则清晰、信息完备的场景。这样的场景,在生产性业务流程中可能还比较多,但在人类的生活中确实比较有限。

人工智能的另一大类型是监督式学习。监督式学习需要大量数据对人工智能系统进行训练。监督式学习一般建立在大数据基础上,适用于规则不清晰、信息不完备的情况。监督式学习通过大量数据的训练,发现数据背后未被发现的规则和关联。监督式学习有广阔的应用空间和应用场景,但监督式学习系统的建立和完善,与大数据系统的建立和使用息息相关。

人工智能是提高生产力的工具。人工智能系统通过在大量无规则不相关的数据中发现数据之间的相关性,寻找到更多的规律和关联,可以极大提高单点效率和系统效率。同时,人工智能与业务逻辑结合,可以在业务逻辑的约束和支撑下,实现更加纵深、更大容量、更加快速的计算,在此基础上拓展出更加广阔的可选择空间,提供更接近最终目标的路径选择方案,实现效率的极大提升。

目前大部分人工智能系统,都是建立在大数据基础上,建立在中心化服务器或中心化的计算环境上面。基于小数据、基于确定性数据,能否进一步挖掘里面的智能?在分布式环境下如何实现分布式的人工智能,也是人工智能未来发展的方向之一。

那么智慧宇宙(WDU)将和大家一起探索AI和加密数字货币的未来。

白话区块链|同步全球区块链资讯、区块链快讯、区块链新闻
本站所有文章数据来源:金色财经
本站不对内容真实性负责,如需转载请联系原作者
如需删除该文章,请发送本文链接至oem1012@qq.com

更多交易所入口

一站式注册各大交易所、点击进入加密世界、永不失联,币安Binance/欧易OKX/GATE.IO芝麻开门/Bitget/抹茶MEXC/火币Huobi

点击进入 永不失联
picture loss